

REPORT

 DNS Analysis with dig
v1.0.1

Author:

Eldon Gabriel

September 1, 2025

Cybersecurity Professional | IT Security Consultant

TABLE OF CONTENTS
REVISION HISTORY... 1

1.1 Project Description... 3
1.2 Resolver Identification & Basic Queries... 4
1.3 FQDN IP Resolution...5
1.4 Identifying Authoritative Nameservers..7
1.5 Root DNS Infrastructure Check..9
1.6 Enumerating Root DNS Server IPs (IPv4 and IPv6).. 11
1.7 Discovering .org and root-servers.org NS.. 12
1.8 Attempt to Resolve root-servers.org...14
1.9 Final Resolution of www.root-servers.org...16
1.10 DNS TTL Behavior for www.google.com..18
1.11 Investigating MX Records and TTLs.. 20
1.12 Querying AAAA (IPv6) DNS Records...22
1.14 DNS Query ID Randomization... 24
1.15 DNS Query ID Randomization... 26
1.16 Querying Root DNS Servers via UDP and TCP...28
1.16.1 Screenshots.. 29
1.16.2 Takeaways & Recommendations.. 31

SECTION 2.0: CONCLUSION...32
2.1 Key Takeaways.. 32
2.2 Security Implications and Recommendations.. 33
2.2.1 Recommendations.. 33

Page 1 of 33

Cybersecurity Professional | IT Security Consultant

REVISION HISTORY

Version Date Author Description of Changes

v1.0.0 07/3/2025 Eldon G. Initial draft.

v1.0.1 09/01/2025 Eldon G. Updated formatting of section headers.

Page 2 of 33

Cybersecurity Professional | IT Security Consultant

1.0 DNS RECONNAISSANCE & RESOLVER ANALYSIS

1.1 Project Description

This task involves using the dig tool on a Unix-based system to explore and query
the Domain Name System (DNS). The goal is to learn how DNS works behind the
scenes, including how domain names are translated into IP addresses. It also
involves identifying which servers hold authority over a domain.

My job is to perform technical checks using command-line tools to gather DNS
information. This helps improve organizational security skills by strengthening DNS
enumeration. It is a valuable step in both attacking and defending network systems.

Source Acknowledgment:

Portions of this report are based on exercises from Computer Networking: Principles,
Protocols, and Practice by Olivier Bonaventure (Apple Books). Content is used for
educational and non-commercial purposes under fair use.

Page 3 of 33

https://books.apple.com/us/book/computer-networking-principles-protocols-and-practice/id545677596

Cybersecurity Professional | IT Security Consultant

1.2 Resolver Identification & Basic Queries

Objective

This task helps identify which DNS server the system is using to answer name
resolution requests. Knowing this is important for understanding how DNS traffic
moves and where it could be monitored or tampered with.

Tools Used

●​ dig command in the terminal (Kali Linux)

Command Run

bash

dig

What I Found

The output showed this line:

yaml

;; SERVER: 192.168.64.1#53(192.168.64.1) (UDP)

This tells me that the system is using 192.168.64.1 as its DNS resolver. That IP is
a private address, so it's likely coming from the local network, like a NAT adapter or a
virtual machine bridge. It’s not a public DNS server like Google or Cloudflare.

Why It Matters

Using a local resolver can help speed up lookups, but it also means DNS queries
might be handled or filtered by the host system. This is something attackers or
defenders could use to their advantage.

Takeaway

Know which DNS server the system talks to. It helps in spotting misconfigurations,
traffic leaks, or signs of spoofing or interception.

Page 4 of 33

Cybersecurity Professional | IT Security Consultant

1.3 FQDN IP Resolution

Objective

This task checks how a Fully Qualified Domain Name (FQDN) resolves to an IP
address. It shows if the name goes through any redirects (called CNAMEs) before
reaching the final address. This helps with analyzing phishing links, subdomain
takeovers, and finding hidden assets.

Tools Used

●​ dig​

●​ dig +short

Commands Run

bash

dig inl.info.ucl.ac.be
dig +short inl.info.ucl.ac.be

What I Found

The regular dig command gave the full DNS chain:

pgsql

inl.info.ucl.ac.be. CNAME www.info.ucl.ac.be.
www.info.ucl.ac.be. CNAME info.ucl.ac.be.
info.ucl.ac.be. A 130.104.228.147

This shows two CNAME records (which are like DNS redirects) that finally lead to an
IPv4 address using an A record.

The +short version returned a simpler view:

pgsql

www.info.ucl.ac.be.
info.ucl.ac.be.
130.104.228.147

Page 5 of 33

Cybersecurity Professional | IT Security Consultant

This version is easier to read and useful in scripts or for quick checks.

Takeaway

FQDNs don’t always go straight to an IP address. They often go through one or
more CNAMEs. Learning to trace that chain is useful for tracking how websites are
set up, spotting suspicious redirections, or uncovering hidden infrastructure.

Page 6 of 33

Cybersecurity Professional | IT Security Consultant

1.4 Identifying Authoritative Nameservers

Objective

This task finds out which DNS servers are in charge of the .be top-level domain
(TLD). These servers hold the official records for any domain ending in .be.
Knowing who manages a domain’s DNS can help detect misconfigurations or
domain misuse.

Tools Used

●​ dig

Commands Run

bash

dig -t NS be.

What I Found

The results show the six authoritative nameservers for the .be domain:

css

be. IN NS a.nsset.be.
be. IN NS b.nsset.be.
be. IN NS c.nsset.be.
be. IN NS d.nsset.be.
be. IN NS y.nsset.be.
be. IN NS z.nsset.be.

These are the DNS servers trusted to give the correct answers for any .be domain.
They are usually managed by the registry responsible for that TLD.

Takeaway

Authoritative nameservers are the final source of truth for DNS records. If they’re
misconfigured or compromised, entire domains can break or be redirected. This is
why identifying and validating them is important during DNS investigations or threat
hunting.

Page 7 of 33

Cybersecurity Professional | IT Security Consultant

1.5 Root DNS Infrastructure Check

Objective

This task checks if the system can reach the root DNS servers — the top-level
servers in the DNS system. They help direct queries to the right TLD servers (like
.com, .org, .be, etc.).

Tools Used

●​ dig

Commands Run

bash

dig

What I Found

Running dig with no arguments triggers a query to the root zone (.). The result
included 13 different root name servers, which is expected:

Figure 1: Default dig command output screenshot, July 2, 2025, Kali Linux, dig 9.20.9.

Page 8 of 33

Cybersecurity Professional | IT Security Consultant

These root servers are spread globally and are key to how the DNS system works.

Takeaway

Access to all 13 root servers confirms that the system’s DNS setup is working
correctly. These servers are the starting point for all DNS lookups on the Internet.

Page 9 of 33

Cybersecurity Professional | IT Security Consultant

1.6 Enumerating Root DNS Server IPs (IPv4 and IPv6)

Objective

This task finds the IP addresses of the 13 root DNS servers. These servers are the
starting points for all DNS lookups. Knowing their IPs helps me understand how DNS
works and troubleshoot problems.

Tools Used

●​ dig

Commands Run

bash

Get IPv4 addresses for all root servers
for letter in a b c d e f g h i j k l m; do
 dig +short ${letter}.root-servers.net A
done

Get IPv6 addresses for all root servers
for letter in a b c d e f g h i j k l m; do
 dig +short ${letter}.root-servers.net AAAA
done

Summary of Output

IPv4:

Figure 2: dig A loop showing root server IPv4s screenshot, July 2, 2025, Kali Linux, dig 9.20.9.

Page 10 of 33

Cybersecurity Professional | IT Security Consultant

IPv6:

Figure 3: dig AAAA loop root servers screenshot, July 2, 2025, Kali Linux, dig 9.20.9.

Observations

●​ All 13 root servers return valid IPv4 addresses.

●​ Each server also returns a valid IPv6 address, showing support for modern
IPv6 DNS queries.

●​ These IPs can be used to query the root servers directly over IPv4 or IPv6,
depending on the network setup.​

Extra Information

The official list of root server addresses is managed by IANA. You can get it anytime
using:

bash

curl -s http://www.internic.net/zones/named.root

This file helps DNS software start recursive lookups by providing “root hints.”

Page 11 of 33

Cybersecurity Professional | IT Security Consultant

1.7 Discovering .org and root-servers.org NS

Objective

This task explores how DNS moves down the hierarchy. First, it finds the
nameservers for the .org domain from a root server. Then it asks one of those
.org nameservers for the nameservers of root-servers.org. This simulates
how DNS looks up addresses step-by-step.

Tools Used

●​ dig

Commands Run

bash

Step 1: Get NS records for .org from a root server
dig @198.41.0.4 org. NS

Step 2: Get NS records for root-servers.org from a .org
nameserver
dig @199.19.56.1 root-servers.org. NS

Summary of Output

●​ Step 1 returned NS records for the .org domain from the root server.
●​ Example nameserver found: a0.org.afilias-nst.info
●​ Step 2 returned authoritative NS records for root-servers.org, including:

○​ a.icann-servers.net.

○​ ns.maxgigapop.net.

○​ ns-ext.isc.org.

○​ and others

Page 12 of 33

Cybersecurity Professional | IT Security Consultant

●​ The response included IP addresses for ns-ext.isc.org:​

○​ IPv4: 149.20.2.126​

○​ IPv6: 2001:500:6b:2::126

Observations

●​ The root server correctly pointed to the .org zone servers.

●​ The .org nameserver gave the full list of nameservers for
root-servers.org.

●​ The TTL for these NS records was 3600 seconds (1 hour), meaning DNS
caches should refresh this data every hour.

Page 13 of 33

Cybersecurity Professional | IT Security Consultant

1.8 Attempt to Resolve root-servers.org

Objective

After finding the authoritative nameservers for www.root-servers.org, this step
tries to get the A record (IPv4 address) for www.root-servers.org by asking one
of those servers. This is like the last step in how DNS looks up a website.

Tools Used

●​ dig

Commands Run

bash

dig @199.7.83.42 www.root-servers.org A

Summary of Output

●​ The server at (199.7.83.42) replied with NS records for the .org domain,
not the A record for www.root-servers.org.

●​ This means the server was not the right one to ask — it’s not authoritative for
www.root-servers.org.

●​ No A record was returned.

Observations

●​ The lookup failed because the wrong server was queried.

●​ To get the right answer, you need to query one of the correct authoritative
servers, like ns-ext.isc.org at 149.20.2.126.

Next Step

Try this command to get the A record:

bash

dig @149.20.2.126 www.root-servers.org A

Page 14 of 33

http://www.root-servers.org

Cybersecurity Professional | IT Security Consultant

This should return the IPv4 address and TTL, finishing the DNS lookup chain.

Page 15 of 33

Cybersecurity Professional | IT Security Consultant

1.9 Final Resolution of www.root-servers.org

Objective

This step finished the full manual DNS lookup for www.root-servers.org by
asking a known authoritative server. The goal was to get the A record (IPv4 address)
and see the TTL (time the record is valid).

Tools Used

●​ dig

Commands Run

bash

dig @149.20.2.126 www.root-servers.org A

Summary of Output

The server replied with:

css

;; ANSWER SECTION:

www.root-servers.org. 3600 IN A 193.0.11.23

●​ The A record shows the IP address is 193.0.11.23

●​ TTL is 3600 seconds, which means the record can be cached for one hour.

●​ The response included the aa flag, meaning the server is authoritative for this
domain.

Observations

●​ The recursion flag was ignored, as expected, because the server is
authoritative and doesn’t do recursion.

●​ The query took about 236 ms, showing a typical delay for direct DNS queries.

●​ The TTL confirms that recursive resolvers can keep this IP cached for an hour
before needing to ask again.

Page 16 of 33

Cybersecurity Professional | IT Security Consultant

1.10 DNS TTL Behavior for www.google.com

Objective

This task looks at how long DNS results are saved (cached) by the system using
TTL (Time-To-Live). I tested it using www.google.com, which is a global service that
changes fast and often.

Tools Used

●​ dig

●​ sleep (to wait between queries)

Commands Run

bash

dig www.google.com A

sleep 5

dig www.google.com A

Summary of Output

First Result:

css

www.google.org. 223 IN A 142.250.199.36

After 5 seconds:

css

www.google.org. 218 IN A 142.250.199.36

●​ The IP stayed the same.

●​ The TTL dropped by 5 seconds, and the system cached the result.

●​ DNS server used: 192.168.64.1 (local resolver).

Page 17 of 33

Cybersecurity Professional | IT Security Consultant

Observations

●​ Google uses short TTLs (starting around 300 seconds) so it can change traffic
routes quickly.

●​ The result was saved in the cache and reused.

●​ This reduces the delay and saves system resources.

Why TTL Matters

●​ Faster Browsing: No need to look up names again right away

●​ Less Load: Fewer requests to DNS servers

●​ Better Control: Changes can take effect quickly when needed

●​ Backup Plan: Cached data can keep things running if DNS goes offline

Page 18 of 33

Cybersecurity Professional | IT Security Consultant

1.11 Investigating MX Records and TTLs

Objective

This task checks how two domains: uclouvain.be and gmail.com—handle email
delivery using MX (Mail Exchange) records. It also interprets the TTL (Time-To-Live)
values to see how long these records are cached.

Tools Used
bash

dig +ttlid uclovuvian.be MX

Dig +ttlid www.gmail.com MX

Summary of Output

uclouvain.be

yaml

uclouvain.be. 4502 IN MX 1
uclouvain-be.mail.protection.outlook.com.

●​ TTL: 4502 seconds (~1.25 hours)

●​ Only one MX record

●​ Preference value: 1 (highest priority)

●​ Points to Microsoft Outlook's mail system

gmail.com

yaml

gmail.com. 2999 IN MX 5 gmail-smtp-in.l.google.com.
gmail.com. 2999 IN MX 10 alt1.gmail-smtp-in.l.google.com.
gmail.com. 2999 IN MX 20 alt2.gmail-smtp-in.l.google.com.
gmail.com. 2999 IN MX 30 alt3.gmail-smtp-in.l.google.com.
gmail.com. 2999 IN MX 40 alt4.gmail-smtp-in.l.google.com.

●​ TTL: 2999 seconds (~50 minutes)

Page 19 of 33

Cybersecurity Professional | IT Security Consultant

●​ Five MX records with different preference values

●​ Lower value = higher priority

●​ Starts with priority 5, then uses backups if needed

Observations

●​ UCLouvain uses Microsoft 365 with a single, stable mail server.

●​ Gmail sends its email delivery across five servers for better uptime and faster
response in different regions.

●​ TTL values reduce the number of DNS requests during email delivery. This
improves performance and reliability.

Page 20 of 33

Cybersecurity Professional | IT Security Consultant

1.12 Querying AAAA (IPv6) DNS Records

Objective

This task checks if websites support IPv6 by using dig to run AAAA record queries.
The goal is to determine if the domains return valid IPv6 addresses, how the records
are structured, and what their TTL (Time-To-Live) values are.

Tools/Queries Used
bash

dig www.sixxs.net AAAA

dig www.google.com AAAA

dig ipv6.google.com AAAA

Summary of Output

www.sixxs.net

●​ CNAME: www.sixxs.net → sixxs.net​

●​ AAAA Records:​

○​ 2001:7b8:3:1e::5

○​ 2a02:898:146::2

○​ 2a10:fc42:d::248

●​ TTL: 473 seconds

www.google.com

●​ AAAA Record: 2404:6800:4001:811::20​

●​ TTL: 275 seconds

ipv6.google.com

●​ CNAME: ipv6.google.com → ipv6.l.google.com​

Page 21 of 33

Cybersecurity Professional | IT Security Consultant

●​ AAAA Record: 2404:6800:4001:80b::200e​

●​ TTLs: 429 (CNAME), 252 (AAAA)

Observations

●​ All domains returned valid IPv6 addresses.

●​ CNAME records were used to point to the actual servers.

●​ TTL values were short, especially for Google, which likely uses this for fast
updates and load balancing.

●​ This confirms IPv6 support and shows how domains are mapped to IPs in
modern DNS setups.

Page 22 of 33

Cybersecurity Professional | IT Security Consultant

1.14 DNS Query ID Randomization

Objective

This task checks if the dig tool in Kali Linux uses random 16-bit IDs for DNS
queries. These IDs help match replies to the correct request. If they are predictable,
attackers can fake responses and poison DNS caches. Randomizing the ID makes
spoofing much harder.

Method

Each DNS query includes a number called a "transaction ID." This ID should be
different every time. To test this, I ran the same dig command several times with
short delays in between to check if the IDs changed.

Tool Used:

●​ dig (DNS Lookup Tool)

Common Sequence:

bash

dig -t MX gmail.com

sleep 1

dig -t MX gmail.com

sleep 1

dig -t MX gmail.com

Observed Transaction IDs:

●​ First run: id: 34211
●​ Second run: id: 50852
●​ Third run: id: 24599
●​ Fourth run: id: 12290
●​ Fifth run: id: 61626
●​ Sixth run: id: 1310

Page 23 of 33

Cybersecurity Professional | IT Security Consultant

Conclusion

The dig tool on Kali Linux randomizes the DNS transaction ID in each query. This
means it follows a key security best practice.

Security Importance

Randomizing DNS IDs protects systems from spoofed DNS replies. Attackers would
have to guess the right ID to trick the system. This method is even stronger when
combined with random source ports and other DNS hardening techniques (as
outlined in RFC 5452).

Extra Notes

Even though the DNS record’s TTL (Time-To-Live) stayed the same across
responses (around 4400–4473 seconds), the query ID still changed. This shows that
the random ID has nothing to do with how long DNS data is cached—it changes
every time for security.

Page 24 of 33

https://datatracker.ietf.org/doc/html/rfc5452

Cybersecurity Professional | IT Security Consultant

1.15 DNS Query ID Randomization

Objective

This task looks at how DNS resolvers (like BIND or Unbound) check if the DNS reply
matches the original request. This is done using something called a "transaction ID."
Matching this number is important to stop fake DNS replies from attackers.

Why Matching the ID Matters

DNS uses UDP, which doesn’t have built-in checks to track who’s talking to whom.
That’s why the transaction ID in the DNS reply must match the ID from the request. If
not, someone could send a fake reply with the wrong IP addresses and trick users.

Tools Used

●​ dig (DNS query client)

●​ bind / unbound (DNS resolvers)

What Could Go Wrong

DNS software might handle the transaction ID in three ways:

●​ Case A – Fixed ID

The ID stays the same (e.g., id: 1234). Attackers can guess it easily.
Risk: Very high. Attackers can spoof replies and trick the system.

●​ Case B – Incremental ID

The ID goes up in order (e.g., 1001, 1002, 1003). Attackers can predict
the next one.
Risk: High. still vulnerable to attacks.

●​ Case C – Randomized ID

The ID changes randomly each time, with 65,536 possibilities.
Risk: Much lower. Attackers rarely guess correctly.

Page 25 of 33

Cybersecurity Professional | IT Security Consultant

1.15.1 Security Implications

Checking the DNS transaction ID is a simple but vital security step. Without it,
attackers can:

●​ Poison the DNS cache

●​ Redirect users to fake sites

●​ Launch man-in-the-middle attacks

Better Security Needs:

●​ Randomized transaction IDs​

●​ Randomized source ports​

●​ DNSSEC for strong data validation

These follow the security standards in RFC 5452.

Page 26 of 33

https://datatracker.ietf.org/doc/html/rfc5452

Cybersecurity Professional | IT Security Consultant

1.16 Querying Root DNS Servers via UDP and TCP

Objective

This task tests whether DNS replies are faster over UDP or TCP. It uses the dig tool
to ask a root DNS server for a list of name servers.

Tools Used

●​ dig (version 9.20.9-1-Debian)

●​ Root DNS server: 192.33.4.12 (C-root)

Commands Run

bash

dig @192.33.4.12 . NS

dig +tcp @192.33.4.12 . NS

Issues & Fixes

●​ No problems occurred.

●​ UDP returned a normal response with no recursion (this is expected from root
servers).

●​ TCP also worked and gave back the same result.

Both methods returned:

●​ 13 NS records (name servers for the root zone)

●​ 27 additional records (IPv4 and IPv6 addresses for those name servers)

Page 27 of 33

Cybersecurity Professional | IT Security Consultant

1.16.1 Screenshots

Figure 4: DNS query header and initial NS records. Source: Kali Linux, dig 9.20.9.

Figure 5: More NS records and IPv4 addresses. Source: Kali Linux, dig 9.20.9.

Figure 6: IPv6 addresses and query details. Source: Kali Linux, dig 9.20.9.

Page 28 of 33

Cybersecurity Professional | IT Security Consultant

Figure 7: DNS query header and first batch of NS records over TCP. Source: Kali Linux, dig 9.20.9.

Figure 8: Remaining NS records with IPv4 addresses over TCP. Source: Kali Linux, dig 9.20.9.

Figure 9: IPv6 addresses and query metadata over TCP. Source: Kali Linux, dig 9.20.9.

Page 29 of 33

Cybersecurity Professional | IT Security Consultant

1.16.2 Takeaways & Recommendations

UDP query time: ~68 ms​
TCP query time: ~67 ms

Conclusion

Normally, UDP is faster than TCP because it doesn’t need to set up a connection.
But in this case, both queries took about the same time. The 1 millisecond difference
is very small and could be caused by random network delays. So, there was no real
speed difference in this test.

Security Context

 TCP is better than UDP when:

●​ The DNS response is too big for UDP (over ~512 bytes)

●​ You’re using DNSSEC for secure DNS

●​ The response is truncated and needs a reliable connection

Also, root DNS servers don’t support recursion, so this test only checks direct
queries, not full DNS lookups.

Recommendation

Use UDP for regular DNS queries—it’s fast and has low overhead.​
Use TCP if:

●​ The response is cut off

●​ You need stronger DNS security (like DNSSEC)

●​ You're troubleshooting or need a reliable connection

Page 30 of 33

Cybersecurity Professional | IT Security Consultant

2.0 CONCLUSION

2.1 Key Takeaways

This project used the dig command in Kali Linux to explore how DNS works. It
covered how queries are built, how DNS IDs are randomized, and how different
protocols (UDP vs. TCP) behave. Here’s what was learned:

●​ Random IDs: Each DNS query had a different transaction ID. This helps stop
attacks like DNS spoofing or cache poisoning.

●​ Root Server Behavior: Root DNS servers only give direct answers. They
don’t support recursion. This is expected and matches how the DNS system is
designed.

●​ UDP vs. TCP: UDP is usually faster, but here both took about the same time
(UDP: 68 ms, TCP: 67 ms). The 1 ms difference doesn’t matter much and
could just be a normal network delay.

●​ Root Server Responses: When asking a root server for data, it returned 13
NS records and 27 A/AAAA records. This shows how root servers help guide
queries through the DNS system.

●​ TCP Reliability: TCP worked well when used for DNS. It’s useful for big
responses or secure DNS features like DNSSEC.​

Overall, this section helped confirm how DNS protocols behave under different
conditions. It showed how small changes in configuration can make DNS more
secure and reliable.

Page 31 of 33

Cybersecurity Professional | IT Security Consultant

2.2 Security Implications and Recommendations

Risks Found

●​ If DNS queries use predictable IDs or ports, attackers can fake DNS replies.

●​ Not using TCP fallback might cause missed or broken DNS responses.

●​ Accepting DNS replies with mismatched IDs can let attackers send fake data.

2.2.1 Recommendations

Technical Actions

●​ Use randomized transaction IDs and source ports (per RFC 5452).

●​ Turn on DNSSEC on recursive DNS servers to check that responses are real.

●​ Use TCP when UDP doesn’t work, especially if the response is large or cut
off.

●​ Watch DNS traffic for signs of tampering, like strange TTL values or fake
domains

Procedural Actions

●​ Teach IT staff how to configure DNS securely.

●​ Add DNS hardening steps to the organization’s standard setup process.

●​ Test DNS servers regularly to check for weak configurations.

Matches with Security Standards

●​ NIST SP 800-81 Rev. 2: Recommends using random IDs, TCP fallback, and
DNSSEC.

●​ ISO/IEC 27001 (A.12.4.1): Encourages logging DNS activity to detect threats.

●​ PCI DSS v4.0 (Req. 1.2.6): Requires secure DNS setups in systems handling
credit card data.

Page 32 of 33

Cybersecurity Professional | IT Security Consultant

Compliance Relevance

Any group that works with sensitive data (like banks or hospitals) needs strong DNS
security. Following these recommendations helps meet rules like PCI-DSS, ISO
27001, and NIST CSF. It also helps protect users from fake websites and DNS
attacks.

Page 33 of 33

	TABLE OF CONTENTS
	REVISION HISTORY
	
	1.0 DNS RECONNAISSANCE & RESOLVER ANALYSIS
	1.1 Project Description
	
	
	
	
	
	
	

	
	
	1.2 Resolver Identification & Basic Queries
	1.3 FQDN IP Resolution
	

	1.4 Identifying Authoritative Nameservers
	1.5 Root DNS Infrastructure Check
	
	
	1.6 Enumerating Root DNS Server IPs (IPv4 and IPv6)
	
	
	1.7 Discovering .org and root-servers.org NS
	
	1.8 Attempt to Resolve root-servers.org
	
	
	
	1.9 Final Resolution of www.root-servers.org
	1.10 DNS TTL Behavior for www.google.com
	
	1.11 Investigating MX Records and TTLs
	1.12 Querying AAAA (IPv6) DNS Records

	
	
	1.14 DNS Query ID Randomization

	
	
	
	
	1.15 DNS Query ID Randomization

	
	
	
	
	
	
	1.16 Querying Root DNS Servers via UDP and TCP
	
	
	1.16.1 Screenshots
	
	
	
	
	
	1.16.2 Takeaways & Recommendations

	
	2.0 CONCLUSION
	2.1 Key Takeaways
	

	2.2 Security Implications and Recommendations
	2.2.1 Recommendations

